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Abstract: The giant optical nonlocality near the Dirac point in lossless
metal-dielectric multilayer metamaterials is revealed and investigated
through the analysis of the band structure of the multilayer stack in the
three-dimensional ω-k space, according to the transfer-matrix method with
the optical nonlocal effect. The position of the Dirac point is analytically
located in the ω-k space. It is revealed that the emergence of the Dirac point
is due to the degeneracy of the symmetric and the asymmetric eigenmodes
of the coupled surface plasmon polaritons. The optical nonlocality induced
epsilon-near-zero frequency shift for the multilayer stack compared to the
effective medium is studied. Furthermore, the giant optical nonlocality
around the Dirac point is explored with the iso-frequency contour analysis,
while the beam splitting phenomenon at the Dirac point due to the optical
nonlocal effect is also demonstrated.
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1. Introduction

Dirac point, conical singularity first discovered in the band structure of graphene [1], is the
source of many remarkable wave transport properties in both electronic [2–4] and photonic
system [5–9], such as the long-range flavor current splitting induced by the giant nonlocality in
graphene [10], conical diffraction [11], Bragg-like reflection [12], quantum-like Goos-Hänchen
shifts [12], and photon Zitterbewegung [13,14] in photonic crystals, because of the linear disper-
sion relation in the neighborhood of the Dirac point. In addition, rigorous analysis based on the
tight-binding approximation and group theory clearly reveals the necessary conditions [15, 16]
for the creation of the Dirac point in the photonic system, including the optical metamaterials, a
kind of artificial composites with periodic subwavelength meta-atoms and tunable electric per-
mittivity and magnetic permeability. Particularly, analogous to the effectively massless electron
induced by the linear dispersion near the Dirac point of the electronic system, a Dirac point

#191413 - $15.00 USD Received 30 May 2013; revised 16 Aug 2013; accepted 16 Aug 2013; published 5 Sep 2013
(C) 2013 OSA 9 September 2013 | Vol. 21,  No. 18 | DOI:10.1364/OE.21.021542 | OPTICS EXPRESS  21543



located at the center of the Brillouin zone (BZ) in the photonic system and optical metamate-
rials implies an effectively zero “optical mass”, i.e., zero electric permittivity [17, 18], leading
significant analogies between the propagation of light in such media and charge transport in
graphene [19].

On the other hand, epsilon-near-zero (ENZ) metamaterials with exotic electromagnetic prop-
erties have been studied in both theory [20–22] and experiment [23–26] recently. It is generally
thought that the ENZ regime in the domain of the optical frequency range guarantees the lo-
cal response described by the effective medium theory (EMT), since the vanishing effective
permittivity implies a long effective wavelength resulting in a negligible optical size of the pe-
riod. However, associated with periodic meta-atom structures in metamaterials, the variation of
the electromagnetic field at the scale of a single meta-atom will result in the optical nonlocality,
which is studied in both nanolayered [27–30] and nanorod [31,32] metamaterials, and extended
to transformation optics [33]. Especially, the optical nonlocality is theoretically analyzed in the
metal-dielectric multilayer metamaterials since the geometrical simplicity allows the exact an-
alytical calculation [30]. It is worth revealing the mechanism of the optical nonlocality near the
Dirac point in the ENZ regime.

In this work, we demonstrate the giant optical nonlocality near the Dirac point in loss-
less metal-dielectric multilayer metamaterials. Based on the transfer-matrix method for one-
dimensional layered photonic crystals, the band structure of the multilayer stack is fully ex-
plored and illustrated in the three-dimensional ω-k space. The exact location of the Dirac point
in the band structure is located by rigorous algebraic analysis. It is revealed that the degeneracy
of the symmetric and the asymmetric eigenmodes of the coupled surface plasmon polaritons
(SPPs) induces the emergence of the Dirac point in the band structure of the multilayer stack,
based on the dispersion relation analysis and the mode analysis around the Dirac point. More-
over, the locations of the Dirac point and the ENZ response in the ω-k space for the multilayer
stack with the optical nonlocality and the effective medium are also studied. The giant optical
nonlocality near the Dirac point is revealed by analyzing the iso-frequency contours (IFCs) in
the k-space with respect to the EMT and the transfer-matrix method. Furthermore, the beam
splitting phenomenon induced by the giant nonlocality at the Dirac point, which is the optical
analogue to the long-range flavor current splitting at the Dirac point in graphene [10], is also
demonstrated by numerical simulations.

2. Band structures and Dirac points of multilayer stack

Consider a multilayer stack composite of alternating layers of gold (Au) and alumina (Al2O3),
with the thickness of each layer as d1 = 15nm and d2 = 35nm, respectively, as depicted in
Fig. 1(a). The permittivity of Au is described by the lossless Drude model ε1 = ε∞ −ω2

p/ω2,
with the permittivity constant ε∞ = 5.7, and the plasma frequency ωp = 1.3666× 1016 rad/s.
Here the material loss of Au is neglected, since it will suppress the optical nonlocality of the
multilayer stack. The permittivity of Al2O3 is ε2 = 2.4. The multilayer stack can be regarded
as a homogenous effective medium with the effective permittivity components described by the
EMT as

ε(0)x =
ε1ε2(d1 +d2)

ε1d2 + ε2d1
=

ε1ε2

(1− f1)ε1 + f1ε2
, (1)

ε(0)y = ε(0)z =
ε1d1 + ε2d2

d1 +d2
= f1ε1 +(1− f1)ε2. (2)

It is worth mentioning that the EMT, Eqs. (1) and (2), only take into account the filling ratios
of different materials in the multilayer stack, i.e., the filling ratio of Au as f1 = d1/(d1 + d2)
and the filling ratio of Al2O3 as f2 = d2/(d1 +d2)≡ 1− f1, rather than the actual thickness of
each layer. Hence, EMT is an approximated theory that works well when the period d = d1+d2
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Fig. 1. (a) The metal-dielectric multilayer stack consists of alternating layers of gold (Au)
and alumina (Al2O3), with d1 = 15nm and d2 = 35nm and the permittivity ε1 and ε2,
respectively. (b) The band structure of the multilayer stack in the first BZ calculated from
Eq. (3) in three dimensional ω-k space. (c) The band 1 and band 2 in the band structure
of the multilayer stack is connected by two Dirac points at the positions determined by
Eq. (5).
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of the multilayer stack is much smaller than the wavelength of the propagated electromagnetic
wave within the metamaterial, in the condition of the long wavelength limit.

More precisely, the stack can be regarded as a layered photonic crystal with the period of
d along the x-direction, and the period of infinity along the y- and z-direction. Regarding a
TM-polarized electromagnetic wave (with non-vanishing components of Ex, Ey, and Hz) prop-
agating in the x-y plane, the band structure of the multilayer stack reads

cos(kx(d1 +d2)) =cos
(

k(1)x d1

)
cos
(

k(2)x d2

)

− 1
2

(
ε1k(2)x

ε2k(1)x

+
ε2k(1)x

ε1k(2)x

)
sin
(

k(1)x d1

)
sin
(

k(2)x d2

)
,

(3)

according to the transfer-matrix method [27]. Here k(1,2)x =
√

k2ε1,2 − k2
y , where k = ω/c is the

wave vector in free space. The band structure of the multilayer stack calculated from Eq. (3) is
displayed in Figs. 1(b) and 1(c) in the first BZ with respect to the period d along the x-direction.
It is clear that the band structure contains three separated bands [Fig. 1(b)], while the band 1
and the band 2 are connected with each other only at two points [Fig. 1(c)], i.e., the Dirac points
that will be focused on here.

Regarding a simple dielectric-metal-dielectric, or metal-dielectric-metal multilayer structure,
it is known that the symmetric and the asymmetric SPP modes are the two fundamental prop-
agating modes in the structure. Meanwhile, in the band structure of the multilayer stack, the
emergence of the two connecting points, i.e., the Dirac points, implies the mode degeneracy of
the symmetric and the asymmetric eigenmodes. Therefore, in order to locate the exact position
of the two Dirac points in the ω-k space, the dispersion relation of the SPP along the metal-
dielectric interface ky/kp =

√
ε1ε2/(ε1 + ε2)k/kp is substituted into Eq. (3), which yields the

following equation

cos(kx(d1 +d2)) = cos

(
k

ε1d1 + ε2d2√
ε1 + ε2

)
. (4)

Here the wave vector kp = ωp/c. Note that the SPP dispersion relation requires that ε1ε2 < 0
and ε1 + ε2 < 0, leading to the condition of ω/ωp < 1/

√
ε∞ + ε2, while a propagating mode in

the multilayer stack requires that the wave vector kx and ky must have real values. Hence, the
only solution of Eq. (4) reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

kx/kp = 0

ky/kp =

√
ε2d1d2

(d2 −d1)(ε∞d1 + ε2d2)
=

√
f1(1− f1)ε2

(1−2 f1)( f1ε∞ +(1− f1)ε2)

ω/ωp =

√
d1

ε∞d1 + ε2d2
=

√
f1

f1ε∞ +(1− f1)ε2

, (5)

which stands for the location of one Dirac point in the ω-k space. Since Eq. (3) is an even
function of the wave vector ky, there are two Dirac points symmetrically distributed along ky-
direction with respect to the origin. It is interesting that Eq. (5) reveals that the positions of the
Dirac points in the band structure are only related on the filling ratios f1 and f2 of the materials
in the multilayer stack, rather than the actual thicknesses of different layers, which means that
the positions of the Dirac points are determined once the filling ratios of the materials are spec-
ified. Moreover, the frequency ω/ωp =

√
d1/(ε∞d1 + ε2d2) is associated with the frequency at

which the effective permittivity ε(0)y = 0, as calculated from Eq. (2) based on the EMT.
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It is necessary to investigate more about the dispersion relation around the Dirac points with
respect to the wave vector kx and ky. Figure 2(a) shows the dispersion relation between the wave
vector kx/kp and the frequency ω/ωp calculated from Eq. (3) with the wave vector ky/kp =√

ε2d1d2/((d2 −d1)(ε∞d1 + ε2d2)) around the Dirac point. The band structure with the band 1
and the band 2 connected with the Dirac point is clearly illustrated. Furthermore, the linear
dispersion at the Dirac point, a necessary condition for a Dirac point, is clear revealed by the
Taylor expansion, and indicated by the black straight lines that obey the following equation

ω/ωp =±kp(d1 +d2)√
2Δ

(kx/kp)+

√
d1

ε∞d1 + εdd2
, (6)

with the constant Δ, a function of parameters ε∞, ε2, d1, and d2, as listed in the Appendix.
Here the constant Δ has a value of 58.705. The linear dispersion relation between kx/kp and
ω/ωp forms the cross section of the Dirac cone at the Dirac point in the ω-kx plane, which is
similar to the case in the electron band structure of graphene, implying that the propagation of
electromagnetic wave in the multilayer stack will be the optical analogue to the charge transport
in graphene.

In addition, Fig. 2(b) displays the dispersion relation between the wave vector ky/kp and the
frequency ω/ωp based on Eq. (3) with the wave vector kx/kp = 0 around the Dirac point. For
comparison, the SPP dispersion relation ky/kp =

√
ε1ε2/(ε1 + ε2)ω/ωp, and the dispersion

relation based on the EMT are also plotted. It is noted that the EMT dispersion relation is
calculated from the following equation

k2
x

ε(0)y

+
k2

y

ε(0)x

=
(ω

c

)2
, (7)

under the condition of the wave vector kx/kp = 0, which implies two different bands as

ky/kp =

√
ε(0)x ω/ωp, (8)

and {
ky/kp ∈ R

ω/ωp =
√

d1/(ε∞d1 + ε2d2)
, (9)

because ε(0)y = 0 at the frequency of ω/ωp =
√

d1/(ε∞d1 + ε2d2). Clearly, the two bands of the
dispersion curves from Eq. (3) for the multilayer stack intersect at the Dirac point, and converge
to the SPP dispersion curve when the wave vector ky/kp is increased, due to the surface plasmon
resonance (SPR) in the condition of ε1 =−ε2. On the contrary, the two bands of the dispersion
curves based on the EMT of Eqs. (8) and (9) do not predict the SPR at large wave vector ky/kp,
since the EMT does not take into account the layered structures of the multilayer stack, but
they still intersect at the Dirac point. Furthermore, the dispersion relation from Eq. (3) for the
multilayer stack also obeys a linear relation at the Dirac point, which is indicated by the black
straight lines that obey the following equation

ω
ωp

−
√

d1

ε∞d1 + ε2d2
=

−C2 ±
√

C2
2 −4C1C3

2C1

(
ky

kp
−
√

ε2d1d2

(d2 −d1)(ε∞d1 + ε2d2)

)
. (10)

The constants C1, C2, and C3 are the functions of parameters ε∞, ε2, d1, and d2, as listed in
the Appendix. Here the three constants have the values of C1 = 58.705, C2 = −20.0954, and

#191413 - $15.00 USD Received 30 May 2013; revised 16 Aug 2013; accepted 16 Aug 2013; published 5 Sep 2013
(C) 2013 OSA 9 September 2013 | Vol. 21,  No. 18 | DOI:10.1364/OE.21.021542 | OPTICS EXPRESS  21547



Fig. 2. (a) The dispersion relation kx/kp ∼ ω/ωp based on Eq. (3), under the condition
of ky/kp =

√
ε2d1d2/((d2 −d1)(ε∞d1 + ε2d2)) in red curves. The band 1 and band 2 are

connected at the Dirac point, located at the position of kx/kp = 0 according to Eq. (5). The
black lines indicate the linear dispersion in the neighborhood of the Dirac point consistent
with Eq. (6). (b) The dispersion relation ky/kp ∼ ω/ωp near the Dirac point based on
Eq. (3), with respect to kx/kp = 0 in red curves. The dispersion relation obtained from the
EMT and the SPP dispersion relation are plotted in dot-dashed black curve and dashed blue
curves, respectively. All the dispersion curves intersect at the Dirac point. The dispersion
curves obtained from the multilayer stack converge to the SPP dispersion when the wave
vector ky/kp increases, due to the SPR. The linear dispersion relation in the neighborhood
of the Dirac point is plotted in black lines based on Eq. (10). (c) The positions of the ENZ
determined from the EMT and the multilayer stack including the optical nonlocality are
marked for comparison.
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C3 = 0.282375. Equation (10) reveals the asymmetry of the dispersion relation between the
wave vector ky/kp and the frequency ω/ωp with respect to the Dirac point, which leads to a
titled cross section of the Dirac cone in the ω-ky plane. Additionally, it is noted that the location
of the Dirac point is not at the center of the BZ, where the wave vector kx/kp = ky/kp = 0, due
to the different periods of the multilayer stack along x- and y-directions. Therefore, the Dirac
point cannot be mapped into an ENZ point in the ω-k space, although the frequency of the
Dirac point is the same as the ENZ frequency predicted by the EMT of Eq. (2), where the

effective permittivity ε(0)y = 0. Depicted in Fig. 2(c), the EMT predicted ENZ point is located
at the position of kx/kp = ky/kp = 0 and ω/ωp =

√
d1/(ε∞d1 + ε2d2). However, the nonlocal

ENZ point for the multilayer stack due to the optical nonlocality is shifted into the position of
kx/kp = ky/kp = 0 but with a lower frequency, which is determined from Eq. (3).

3. Iso-frequency contours and propagating modes

The IFCs of multilayer stack represents the spatial dispersion in k-space, which are directly
related to the propagating properties of electromagnetic waves. Displayed in Fig. 3, the IFCs of
five different frequencies near the Dirac point are plotted, including 636.577THz [the nonlocal
ENZ frequency from Eq. (3)], 641THz (slightly below the Dirac point), 647.027THz [at the
Dirac point from Eq. (5)], 651THz (slightly above the Dirac point), and 671THz (far above the
Dirac point). The IFCs calculated from the band structure of Eq. (3) for the multilayer stack are
plotted as red curves, while the IFCs obtained from the EMT of Eq. (7) are plotted as blue curves
for comparison. It is found that the IFCs obtained from Eq. (3) consist of two branches at all
frequencies, a hyperbolic-like branch and an elliptic-like branch, which is coincident with the
band structure shown in Fig. 1(c), and the two branches join together at the Dirac point shown in
Fig. 3(c). On the contrary, the EMT calculated IFCs consist of only one single branch, varying
from hyperbolic-like to elliptic-like as the frequency is increased, and they possess similar
curvatures as that of the IFCs from Eq. (3) when

∣∣kx/kp
∣∣� 1, which is coincident with the long

wavelength limit for the EMT. It is shown in Fig. 3(c) that the EMT calculated IFC reduces into
a straight line along the ky-axis at the frequency of the Dirac point, which is corresponding to
the band structure described by Eq. (9). While the nonlocal IFC at the same frequency obtained
from Eq. (3) shows a dramatic difference, revealing a giant optical nonlocality at the Dirac
point. With the optical nonlocality, the permittivity will be a function of both the frequency
and the wave vector, which can be analytically described in an approximate way based on a
modification about the EMT of Eqs. (1) and (2), through the Taylor expansion of Eq. (3) under

the conditions of |kx(d1 +d2)| � 1,
∣∣∣k(1)x d1

∣∣∣� 1, and
∣∣∣k(2)x d2

∣∣∣� 1, which are all satisfied in

the neighborhood of the Dirac point. By expanding Eq. (3) up to the third non-vanishing term,
the approximated dispersion relation can be written in the form of Eq. (7) as

k2
x

εeff
y

+
k2

y

εeff
x

=
(ω

c

)2
, (11)

with the modified nonlocal effective permittivity components of εeff
x = ε(0)x /(1 − δx), and

εeff
y = ε(0)y /(1− δy), where the nonlocal modification factors δx and δy are the functions of

both frequency and wave vector as

δx =
Ax1 +Ax2 +Ax3 +Ax4 +Ax5 +Ax6

Bx0(Bx1 +Bx2 +Bx3 +Bx4 +Bx5)
, (12)

and

δy =
Ay1 +Ay2 +Ay3 +Ay4 +Ay5

By1 +By2 +By3 +By4 +By5
, (13)
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Fig. 3. The variations of the IFCs at five different frequencies around the Dirac point (a)
636.577THz (the nonlocal ENZ frequency), (b) 641THz (slightly below the Dirac point),
(c) 647.027THz (at the Dirac point), (d) 651THz (slightly above the Dirac point), and (e)
671THz (far above the Dirac point). The IFCs from Eq. (3) with the optical nonlocality are
plotted in red curves, while the EMT calculated IFCs are plotted in blue curves. The IFC of
air is plotted in green circle for reference. The IFCs from Eq. (3) consist of two branches,
and two eigenmodes degenerate at the Dirac point. On the contrary, only a single branch
exists in the EMT calculated IFCs, which reduces into a straight line at the frequency of
the Dirac point.
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in which all the terms are listed in the Appendix. The approximated IFC based on Eq. (11)
at the frequency of the Dirac point is plotted as black curves in Fig. 3(c), and it matches well
with the IFC directly obtained from Eq. (3) near the Dirac point. The nonlocal modification
factors clearly reveal that the modified nonlocal effective permittivity εeff

x and εeff
y are not only

related with the frequency, but also strongly dependent on the wave vector components kx and
ky. It is shown that at the Dirac point, the nonlocal modification factor δx = 0, which means

εeff
x = ε(0)x and the nonlocal effect does not affect the effective permittivity component vertical

to the multilayer interface. However, there is significant difference for the modified nonlocal
effective permittivity component εeff

y , where the nonlocal modification factor δy = 1 at the Dirac

point, leading to an indeterminate form of the εeff
y = ε(0)y /(1−δy) = 0/0, since ε(0)y = 0 at the

Dirac point. The limitation shows that

lim
(

εeff
y

)
=

ε2
2 d1d2

2k2
p

12(ε∞d1 + ε2d2)
= 0.108129 (14)

at the Dirac point, which is coincident with the previous analysis that the Dirac point in the
band structure of the multilayer stack cannot be mapped into the ENZ point.

According to the IFCs with nonlocal effects calculated from Eq. (3), the corresponding eigen-
modes and propagating patterns are analyzed for the electromagnetic wave propagating along
y-direction in the multilayer stack in Fig. 4, at three frequencies around the Dirac point includ-
ing 641THz, 647.027THz, and 651THz, displayed in Fig. 4. The eigenmodes supported in one
period of Al2O3-Au-Al2O3 unit cell of the multilayer stack are illustrated with the distributions
of the magnetic field amplitude Hz and the absolute value of the magnetic field abs(Hz). When
the frequency is below or above the frequency of the Dirac point, the propagating electromag-
netic wave possesses two different eigenmodes, the symmetric mode and the anti-symmetric
mode, with different propagating constants ky as marked on the IFCs in Fig. 3. The two eigen-
modes degenerate into a single symmetric mode at the frequency of the Dirac point. Besides,
an interchange of the two eigenmodes occurs when the frequency pass across the frequency of
the Dirac point, due to a band inversion at the Dirac point as shown in Fig. 2(b).

In addition, the giant optical nonlocality near the Dirac point of the multilayer stack can result
in a unique optical phenomenon in the propagation of the electromagnetic wave. The propaga-
tion of a TM polarized Gaussian beam (with Ex, Hz, and ky) is considered at the three different
frequencies, and the distributions of the absolute value of the magnetic field abs(Hz) are shown
in Fig. 4. For comparison, both the multilayer stack and the corresponding effective medium
are simulated. Regarding the normal incidence, it is found that the Gaussian beam is scattered
into the similar diverging patterns in both multilayer stack and effective medium, when the fre-
quency is below and above the frequency of the Dirac point, due to the common sharp curvature
of the IFCs near the Dirac point in Figs. 3(b) and 3(d). However, at the frequency of the Dirac
point, the propagation of the electromagnetic wave is extraordinary. In the multilayer stack, due
to the degeneration of the symmetric mode and the anti-symmetric mode, the joint of the two
IFC branches at the Dirac point flatten the sharp curvature, leading to a splitting of the Gaus-
sian beam into two mirrored propagating directions, as shown in Fig. 4(b). The beam splitting
phenomenon in the multilayer stack due to the optical nonlocality can be looked as the optical
analogue to the giant nonlocality enhanced long-range flavor current splitting in the quantum
Hall effect of graphene at the Dirac point. On the contrary, the incident electromagnetic wave
is totally prevented from propagating into the corresponding effective medium due to the large
impedance mismatch, which is coincident with the EMT calculated IFC shown in Fig. 3(c).
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Fig. 4. The eigenmodes and the propagating patterns of the electromagnetic wave in the
multilayer stack at three different frequencies of (a) 641THz, (b) 647.027THz, and (c)
651THz near the Dirac point, corresponding to the IFCs in Fig. 3. The symmetry eigen-
mode and the asymmetry eigenmode in one Al2O3-Au-Al2O3 unit cell of the multilayer
stack are represented by the amplitude and the absolute value of the magnetic field Hz. The
two eigenmodes degenerate as one symmetric mode at the frequency of the Dirac point,
and invert as the frequency across the frequency of the Dirac point. The propagating pat-
terns are plotted for both the multilayer stack and the corresponding effective medium for a
normal incident Gaussian beam of TM mode (Ex, Hz, and ky), represented by the distribu-
tion of the absolute value of the magnetic field abs(Hz). Similar diverging patterns can be
observed when the frequency is above and below the Dirac point, due to the sharp curvature
of the IFC. The giant optical nonlocality at the Dirac point leads to a beam splitting in the
multilayer stack that is dramatically different from the propagating property in the effective
medium.
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4. Conclusions

The giant optical nonlocality near the Dirac point for the multilayer stack have been revealed
in lossless metal-dielectric multilayer metamaterials by studying the band structure in the three
dimensional ω-k space based on the transfer-matrix method with the optical nonlocal effect.
The exact location of the Dirac point in the band structure of the multilayer stack is determined
and the dispersion relation around the Dirac point is investigated in details. Based on the mode
analysis, it is proved that the degeneracy of the symmetric mode and the asymmetric mode of
the coupled SPPs is the origin of the Dirac point. Meanwhile, the position shift of the ENZ
point in the band structure affected by the giant optical nonlocality near the Dirac point is also
explored, and a nonlocal modification on the dispersion relation based on the EMT including the
optical nonlocality near the Dirac point is derived. Furthermore, the giant optical nonlocality
near the Dirac point is revealed by means of the IFC analysis, and the extraordinary beam
splitting at the Dirac point induced by the giant optical nonlocality is also demonstrated. Finally,
it is noted that although the study is carried out under lossless condition, the giant optical
nonlocality still affects the propagation of the electromagnetic wave with a moderate material
loss.

Appendix

The constant Δ in the linear dispersion relation Eq. (6) between the wave vector kx/kp and the
frequency ω/ωp can be calculated as follows

Δ =− 1

4ε2
2 d3

1d4
2

(Δ1 +Δ2 +Δ3 +Δ4) , (15)

in which
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δ1 = ε∞ε2d1d2(ε∞d2
1 + ε2d2

2)(d1 +d2)
3

Δ2 = (ε∞d2
1 + ε2d2

2)(ε2
∞d3

1 + ε2
2 d3

2)(d1 +d2)
2

Δ3 = 2ε2d2
1d2

2k2
p(ε∞d2

1 − ε2d2
2)(d2 −d2)

Δ4 =−(ε∞d1 + ε2d2)(ε∞d2
1 + ε2d2

2)
2(d1 +d2)

2 cosh

(
2
√

ε2d1d2kp√
(d2 −d1)(ε∞d1 + ε2d2)

). (16)

The constants C1, C2, and C3 in the linear dispersion relation Eq. (10) between the wave
vector ky/kp and the frequency ω/ωp can be calculated as follows

C1 =− 1

4ε2
2 d3

1d4
2

(
C(1)

1 +C(2)
1 +C(3)

1 +C(4)
1 +C(5)

1

)
, (17)

C2 =− d2
1 −d2

2

2ε2d3
1d3

2

√
d2 −d1

ε2d2

(
C(1)

2 +C(2)
2 +C(3)

2 +C(4)
2

)
, (18)

and

C3 =− (d2
1 −d2

2)
2

4ε2d3
1d3

2

(
C(1)

3 +C(2)
3 +C(3)

3

)
, (19)
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with all terms listed as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
1 = ε3

2 d5
2

(
(d1 +d2)

2 −2d2
1d2(d1 −d2)k

2
p

)

C(2)
1 = ε∞ε2

2 d1d3
2

(
(d1 +d2)

2(2d1 +d2)+4d3
1d2(d1 −d2)k

2
p

)

C(3)
1 = ε2

∞ε2d3
1d2
(
(d1 +d2)

2(d1 +2d2)−2d3
1d2(d1 −d2)k

2
p

)

C(4)
1 = ε3

∞d5
1(d1 +d2)

2

C(5)
1 =−(d1 +d2)

2(ε∞d1 + ε2d2)(ε∞d2
1 + ε2d2

2)
2 cosh

(
2
√

ε2d1d2kp√
(d2 −d1)(ε∞d1 + ε2d2)

)
, (20)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

C(1)
2 = ε2

2 d3
2

(
d1 +d2 +2d2

1d2k2
p

)

C(2)
2 = ε∞ε2d1d2

(
(d1 +d2)

2 −2d3
1d2k2

p

)

C(3)
2 = ε2

∞d3
1 (d1 +d2)

C(4)
2 =−(d1 +d2)(ε∞d1 + ε2d2)(ε∞d2

1 + ε2d2
2)cosh

(
2
√

ε2d1d2kp√
(d2 −d1)(ε∞d1 + ε2d2)

)
, (21)

and ⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C(1)
3 = ε2d2

(−d1 +d2 +2d2
1d2k2

p

)

C(2)
3 = ε∞d1 (−d1 +d2)

C(3)
3 = (d1 −d2)(ε∞d1 + ε2d2)cosh

(
2
√

ε2d1d2kp√
(d2 −d1)(ε∞d1 + ε2d2)

). (22)

The modification factors δx and δy in Eqs. (12) and (13) are based on the following terms

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ax1 = ε1ε2
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k2

y − ε1k2)d5
1

Ax2 =
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(2ε2

1 + ε1ε2 +2ε2
2 )k

2
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1 +2ε1ε2 +2ε2
2 )k

2)d4
1d2

Ax3 = 2
(
(ε2

1 +3ε1ε2 + ε2
2 )k

2
y − ε1ε2(3ε1 +2ε2)k

2)d3
1d2

2

Ax4 = 2
(
(ε2

1 +3ε1ε2 + ε2
2 )k

2
y − ε1ε2(2ε1 +3ε2)k

2)d2
1d3

2

Ax5 =
(
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2
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1 +2ε1ε2 + ε2
2 )k

2)d1d4
2

Ax6 = ε1ε2
(
k2

y − ε2k2)d5
2

, (23)

⎧
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Bx0 = ε1d2 + ε2d1
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1
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2d3

1d2
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1
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Bx5 = ε2(ε2k2d2
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2

, (24)
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and ⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ay1 = ε1
(
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x
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d4

1
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x
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d3

1d2
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2
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1d2
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2
x
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2
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x
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d4

2

, (25)

⎧
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By1 = ε2
1 k2d4

1

By2 = 2ε1(ε1 + ε2)k
2d3

1d2
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)
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2
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